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Project’s Symphony code: Initial release

H. Park

January 19, 2021

Abstract

One of the recent focuses in the next-generation code (NGC/Ristra)
project at LANL is to develop a cell-centered Lagrangian radiation-
hydrodynamics code under FleCSI framework [1]. The FleCSI frame-
work provides a unified data and execution model in order to insulate
production code development from the uncertainty of evolving runtime
and architectures. We have developed the code, Symphony, which in-
corporates the hydrodynamics code, FleCSALE [3], and the radiation
transport code, Puno.

This memo is intended to describe the coupling of radiation and
hydrodynamics within the Ristra Project’s code Symphony.

1 Introduction

Accurate modeling of radiation-hydrodynamics problems is important for
many high-energy density physics (HEDP) applications such as Inertial Con-
finement Fusion (ICF) and astrophysical problems. In such applications, the
system generally consists of both optically thick and thin media. Thus, be-
cause of the presence of thin media, the kinetic description of the radiation
transport equation is desired.

There are several (non-UCNI) radiation-hydrodynamics codes with a high-
order radiation transport (Table 1). In general, astrophysical application
codes tend to use Eulerian hydro scheme, while ICF application codes of-
ten use Lagrange/ALE hydro schemes (xRage [10] is an exception, which is
currently used for many ICF applications).
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Code HYDRO RAD Institution Ref.
TROLL ALE IMC CEA (France) [15]
TORUS Eulerian IMC UK [11]
FLASH Eulerian IMC U of Chicago [2]
BHLIGHT Eulerian MHD MC U of Illinois [25]
MULTI Lagrange SN Germany [24, 23, 22]
SARA Lagrange SN Spain [12]
ZEUS-2D Eulerian SN U of Illinois [26]
ATHENA Eulerian SN U of Illinois [4, 13]
VULCAN Eulerian(Lag+remap) SN Princeton U [16]

One of the recent focuses in the next-generation code (NGC/Ristra)
project at LANL is to develop a cell-centered Lagrangian and ALE (La-
grange+Remap) radiation-hydrodynamics code under the FleCSI framework
[1]. We discuss a detailed Lagrangian radiation-hydrodynamics algorithm
implemented in the Symphony code.

2 Lagrangian Radiation Hydrodynamics Equa-

tions

We are interested in solving the following Lagrangian hydrodynamic equa-
tions:

ρ
Du

Dt
+∇p =

1

c
(σtF−DF ) , (1)

ρ
DE
Dt

+∇ · (up) = −σpacT 4 + σEcE −DE, (2)

ρ
De

Dt
+ p∇ · u = −σpacT 4 + σEcE. (3)

Here E = e+ u2/2 is the total specific material energy, ρ, e,u, p are the den-
sity, specific internal energy, velocity and pressure, respectively. The term,
σEcE − σpacT 4, is the energy exchange term between radiation and mate-
rial due to absorption-reemission physics, and DE and DF are the material
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motion correction terms [18],

DE = −σtβ ·
[
F−

(
4

3
− θ
)
Eu

]
, (4)

DF =

(
4

3
− θ
)
σtEu. (5)

where β = u/c is the ratio between the material velocity and the speed of
light, and E = (1/c)

∫
4π

∫
IdνdΩ, F =

∫
4π

∫
ΩIdνdΩ are the (gray) radiation

energy density and radiative flux, respectively. θ is a free parameter whose
value depends on the hydrodynamics scheme employed. For example, θ = 0
is used in original Morel’s simplified material motion correction [19] and θ =
4/3 is proposed for Eulerian radiation hydrodynamics with Implicit Monte
Carlo (IMC) [18]. This form of the material motion correction possesses
desired characteristics in a non-relativistic limit, such as (a) total energy and
momentum conservation, (b) preservation of an equilibrium solution, and (c)
an equilibrium diffusion limit to O(u/c) [19].

A generalized, simple material-motion corrected TRT equation proposed
by Lowrie and Wollaber [18] is

1

c

∂Ig
∂t

+ Ω · ∇Ig +∇ · (θβIg) + σt,gIg = σa,gBg +
σs,gcEg

4π
+

1

4π
[DE,g + 3Ω ·DF,g] ,

(6)

where Ig(r,Ω, t) is the specific angular intensity for frequency group g, and
σt,g, σa,g, and σs,g are the total, absorption and scattering opacities, respec-
tively. For Lagrangian radiation-hydrodynamics, θ = 1 is a natural choice
because it takes care of the advection term [18]. Using the following rela-
tionships:

1. conservation of mass:
Dρ

Dt
+ ρ∇ · u = 0, (7)

2. definition of total derivative:

Df

Dt
=
∂f

∂t
+ u · ∇f, (8)

yields TRT eqn in the Lagrangian frame:

1

c
ρ
D

Dt

(
Ig
ρ

)
+ Ω · ∇Ig + σt,gIg = σa,gBg +

σs,gcEg
4π

+
1

4π
[CE,g + 3Ω ·CF,g] .

(9)
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We have used the following notation:

CE,g = DE,g(θ = 1) = −σt,gβ ·
[
Fg −

1

3
Egu

]
, (10)

CF,g = DF,g(θ = 1) =
1

3
σtEgu, (11)

for the material motion correction terms. Finally, we arrive at the following
(gray) moment equations by taking the first two angular moments of Eq. 9
and summing over all the frequency groups,

ρ
D

Dt

(
E

ρ

)
+∇ · F + σEcE = σpacT

4 + CE, (12)

1

c
ρ
D

Dt

(
F

ρ

)
+ c∇ · EE + σRF = CF (13)

where E is the Eddington tensor. Our radiation-hydrodynamics system con-
sists of Eqs. 1, 2, 3 and 9.

3 Design Concept of Symphony

Symphony code, developed under NGC/Ristra project at LANL, has a unique
design concept which distinguishes from previously developed radiation hy-
drodynamics codes, such as xRage [10]. Symphony is viewed as a collection
of single physics codes, rather than a hydrodynamics code with radiation
transport capabilities.

Fig. 1 shows the organization of the Symphony code. As can be seen,
Symphony consists of four main submodules. FleCSI [1] is the overall com-
putational framework that handles parallel task-executions. FleCSI-SP is
the mesh specialization, providing an interface to connectivities for each of
the mesh entities (e.g., cells/faces/vertices/corners). FleCSALE [3] is a gas
dynamics code, with both Lagrangian and Eulerian hydrodynamics options.
Finally, Puno is the radiation transport solver. While, the core part of Puno
is a gray radiation transport solver with a P1 approximation, Puno has also
the capability of obtaining high-fidelity, multigroup radiation transport solu-
tions. Currently, an interface to Capsaicin SN radiation transport library is
available to obtain transport solutions. Puno has the option of using either
the HOLO algorithm [21] or a stand-alone linearized transport through its
coupling to Capsaicin.
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Figure 1: Symphony code organization

FleCSI-based physics application codes consist of a collection of “tasks”,
which enables more concurrent, task-based parallelism. With this task-based
code development paradigm, the key roles of Symphony are:

1. to decide how to execute a time step, (e.g., ordering of tasks)

2. to implement tasks describing coupling terms (e.g., material-motion
correction, energy-deposition)

3. to set-up the problem, and

4. to post-process the solutions.

Since each physics operator is encapsulated as a small task, in theory,
it is relatively straightforward to test different time-integration and coupling
schemes between radiation and hydrodynamics. The items 1 and 2 are specifi-
cally important features of Symphony, enabling task-based parallelism as well
as minimizing data exposure to a single-physics third-party library (TPL),
such as the Capsaicin transport code. The next section describes details of
the current implementation.
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4 Description of Methods/Algorithm required

for coupling

As stated earlier, Symphony consists of two single-physics packages, Puno
(for radiation transport) and FleCSALE (for hydrodynamics). We first de-
scribe how these single-physics packages solve the equations.

4.1 Radiation Transport Solver Strategy

Puno is capable of solving the following multifrequency TRT equations:

1

c

∂Ig
∂t

+ Ω · ∇Ig + σt,gIg = σa,gBg +
σs,gcEg

4π
. (14)

ρ
de

dt
= −σpacT 4 + σEcE. (15)

Note that the radiation transport takes into account stiff absorption-reemission
physics. Due to the stiff nonlinearity of the absorption-reemission physics
and a large dimensionality of the radiation transport equation, obtaining an
accurate solution of the radiation hydrodynamics system is a difficult task.

A popular strategy for solving Eqs. 14 and 15 is via linearization of the
reemission source [6], which is equivalent to taking a single Newton-step
by transforming reemission to an effective scattering. Because of stiffness
of the effective scattering term in the optically thick regions, generally, the
solution of the linearized TRT equation needs to be accelerated, via subspace
methods such as linear multifrequency gray (LMFG) acceleration [14] or
hybrid methods such as discrete diffusion Monte Carlo (DDMC) [5].

In order to remedy computational demands on the radiation transport
solver, we have recently developed a High-Order, Low-Order (HOLO) algo-
rithm [21]. The HOLO algorithm is a moment-based acceleration method,
which employs a discretely-consistent LO system to accelerate the solution of
the stiff kinetic systems. Taking the first two angular moments, and summing
over all frequency groups yields the following LO system[21],

∂E

∂t
+∇ · F + σEcE = σpacT

4, (16)

1

c

∂F

∂t
+
c

3
∇E + σRF = γcE, (17)

ρ
de

dt
+ σpacT

4 = σEcE. (18)
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Note that the closure Eq. 17 is expressed in terms of P1 + consistency term
(γcE). The nonlinear absorption-reemission term is directly solved in this
low-dimensional system without linearization. The nonlinearly-consistent
reemission source is then projected to the HO system. The consistency term
γ can be set to zero when the HO transport is absent, then the LO system
will reduce to the standard, gray P1 radiation equations.

Figure 2: Puno code organization

Fig. 2 depicts how Puno integrates the Sn transport code Capsaicin. As
can be seen from Fig. 2, Capsaicin’s task is to perform transport sweeps
with given reemission source (step 1). Using the angular moments of the HO
solution, Puno evaluates the weighted gray opacities, the consistency term
and the boundary conditions (step 2). After solving the nonlinear LO system
(step 3), Puno evaluates a new reemission source, which is used in Capsaicin
for the next transport sweep (step 4).

Although Puno was initially developed for use of the HOLO algorithm, it
is relatively straightforward to include the stand-alone TRT solver capability
because the two Capsaicin interfaces, Poblano (HOLO interface) and Man-
zano (linearized TRT interface), are similar. Currently, there are two FleCSI
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Algorithm 1: HOLO-SN iterations in Puno

Set initial condition I0, T0, E0,F0 ;
Set n = 0, tn = 0;
while tn < tfinal do

tn+1 = tn + ∆tn ;
set k = 0 ;
set T 0

n+1 = Tn ;
while HOLO iterations not converged do

k = k + 1;
HO solve ;

Using In, T k−1
n+1 perform transport sweeps to obtain

In+1, EHO, FHO;
Closure Evaluation;
Using EHO, FHO, evaluate σE, σP , σR, γ and boundary
condition;

LO solve ;
Using σE, σP , σR, γ, solve Eqs. 16-18 for En+1, T

k
n+1

end
Update solutions for next time-step;

end

tasks (i.e., set-up and solve tasks) when using Capsaicin. The setup task is
identical between HOLO and linearized TRT, thus, with a simple swapping
of the solve tasks, Puno can also directly solve the linearized form of the
TRT equation.

4.2 Hydrodynamics Solver Strategy

FleCSALE in Lagrangian mode solves the following set of equations:

Dρ

Dt
+ ρ∇ · u = 0, (19)

ρ
Du

Dt
+∇p = 0, (20)

ρ
DE
Dt

+∇ · (up) = 0, (21)

The hydro step consists of: (1) computing vertex velocities by solving a
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multi-dimensional Riemann problem; (2) evaluating the corner forces; and (3)
applying the appropriate corner forces to update the cell-centered hydro vari-
ables. FleCSALE uses RK2 (predictor-corrector) as a default time-stepping
scheme.

Algorithm 2: Lagrangian Hydrodynamics in FleCSALE

Set initial condition I0, T0, E0,F0 ;
Set n = 0, tn = 0;
while tn < tfinal do

Predictor Step ;
evaluate corner forces Fpcn from previous state ;
compute numerical fluxes dUdtn for each cell from Fpcn ;
evaluate time-step ∆tn;
move mesh to tn+1/2, using un, ∆tn/2, to get rn+1/2;
update solution to tn+1/2 ρn+1/2, un+1/2, En+1/2, using dUdtn ;
update Pn+1/2, Tn+1/2 from ρn+1/2, En+1/2;
Corrector Step ;
evaluate corner forces Fpcn+1/2 ;
evaluate fluxes dUdtn+1/2;
move mesh to tn+1; un+1/2, ∆tn+1, rn+1/2;
update solution ρn+1, un+1, En+1 from dUdtn+1/2;
update Pn+1, Tn+1 from En+1, ρn+1;
tn+1 = tn + ∆tn ;
n = n+ 1;
Update solutions for next time-step;

end

4.3 Radiation Hydrodynamics Solver Strategy

Currently, Symphony solves a radiation hydrodynamics problem via the
operator-splitting between hydrodynamics and radiation during each time
step, as suggested in [27, 28, 22, 2, 9]. Each time-step consists of the explicit
hydrodynamics step followed by the material motion correction step, and
finishes with the implicit radiation step.

We may express radiation-hydrodynamics equations in the following gen-
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eral operator notation:

∂U

∂t
= Fhydro(U) + Fmmc(U) + Frad(U) (22)

where U is the state variables, and F(U) is the corresponding (non-)linear
operator. Generally, we solve Eq. 22 via operator-splitting, where a “stiff”
operator (i.e., Frad) is solved implicitly, while the rest of the operators (e.g.,
Fhydro, Fmmc) are solved explicitly. This implicit-explicit (IMEX) operator-
splitting results in the following update for the state variables U.

Un+1 = Un + ∆tFhydro(Un) + ∆tFmmc(Un) + ∆tFrad(Un+1) (23)

Eq. 23 can be solved by the following steps:

U∗ = Un + ∆tFhydro(Un), (24)

U∗∗ = U∗ + ∆tFmmc(Un), (25)

Un+1 = U∗∗ + ∆tFrad(Un+1) (26)

Using the above operator-splitting, a radiation-hydrodynamics time-step
consists of the following:

1. Lagrangian hydro step (predictor-corrector) (FleCSALE):

rn+1 = rn + un+1/2∆t (27)

uh = un −
∆tV

m

(
∇pn+1/2

)
(28)

eh = en −
∆t

m
(V∇ · up)n+1/2 (29)

2. Angular intensity adjustment due to mesh motion (Symphony):

Ih = In
ρn+1

ρn
(30)

3. Momentum deposition(Symphony):

un+1 = uh +
∆t

ρc
(σtFn −Cn

F ) (31)
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4. Material motion correction(Symphony):

Im − Ih
c∆t

=
Cn
E + 3Ω ·Cn

F

4π
(32)

5. Remap1 (Portage):
Remap cell averaged state variables to new mesh.

Iremap =
Vold
Vnew

∫
Vnew

IremapdV∫
Vold

ImdV
Im, (33)

6. Radiation step (Puno):

In+1 − Im
∆t

+ Ω · ∇In+1 + σIn+1 = σB, (34)

en+1 − eh
∆t

+ σacT 4
n+1 − σcEn+1 = 0 (35)

Symphony uses Portage [7] for multimaterial remapping. Currently Sym-
phony is capable of a running radiation hydrodynamics problem using a
Lagrange+remap. When the Lagrange+remap algorithm is employed, the
remap step is performed before the implicit radiation step, and we remap cell-
averaged state variables. The corner-based specific intensities are rescaled by
the ratio of cell-averaged specific intensities (Eq. 33, )in order to conserve the
radiation energy in the system.

Fig. 3 depicts the organizations of the tasks in Symphony with the HOLO
radiation step. Steps 2, 3, 4 and 6 account for radiation-hydrodynamics
coupling, and steps 3 and 4 can be performed in any order. Note that
all tasks associated with radiation-hydrodynamics coupling are implemented
inside Symphony. Taking care of all the radiation-hydrodynamics coupling
terms within Symphony enables use of a unified interface for the HOLO
algorithm, regardless of the type of hydrodynamics schemes employed (i.e.,
Lagrangian or Eulerian, or lack thereof). As can be seen from step 1 in Fig.
2 and step 5a in Fig. 3, only difference among these methods is how to adjust
(or not adjust) specific intensity, I, and its angular moments, to take into
account the mesh motion and the momentum depositions. Furthermore, a
similar set of tasks are required even if the high-order radiation transport is
absent.

1when present

11



We emphasize that this form of operator-splitting is convenient for devel-
oping a modular radiation-hydrodynamics code because the hydrodynamics
and radiation steps remain exactly the same as the one for the single-physics
system. Performing the radiation step at the end of each time step guaran-
tees the proper material-radiation energy balance and satisfies Eq. 23. This
holds true even when the remap is present.

Similar to the stand-alone radiation solve, we have two options for per-
forming the radiation step, either solving the TRT equation via the HOLO
algorithms (Fig. 3) or linearized SN (Fig. 4) with a simple swapping of the
transport tasks. In both cases, the radiation-hydrodynamics coupling tasks
(i.e., mesh-motion, momentum deposition, material motion correction, and
energy deposition) are the same.

Figure 3: Radhydro algorithm in Symphony

12



Figure 4: Radhydro algorithm in Symphony with Linearized TRT

4.4 Multi-material Treatment

Lastly, we describe a multi-material treatment used in Symphony. Currently,
FleCSALE is capable of running multi-material hydrodynamics, while Puno
uses a “mixture” or homogenized material in each cell2. As described in
the previous sections, coupling between the hydrodynamics and the radia-
tion transport occurs through the momentum and energy exchange terms.
When mixed material cells exist, one needs to define the following mixed-cell
quantities:

1. opacities

2. specific heat,

3. material temperature in mixed cell, and

2Each computational cell has one material temperature and radiation energy density
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4. distribution of energy deposition to each material due to absorption-
emission.

To evaluate a mixed opacity σ [cm−1], we use a volume fraction, Vi = vi
V

,
weighted opacity,

σ =
∑
i

Viσi, (36)

=
∑
i

vi
V
σi (37)

This formulation is equivalent to a mass fraction, Mi = ρivi
ρV

, weighted specific

opacities κ [cm2/g].

κ =
∑
i

Miκi (38)

=
∑
i

ρivi
ρV

σi
ρi

(39)

Hence,

ρκ ≡ σ =
∑
i

vi
V
σi (40)

Note that we evaluate material opacities of each material in cell, σi(ρ, T ),
using “bulk (mixed)” density and temperature. “bulk” material temperature
and specific heat, cv [erg/g − eV ] of a cell are evaluated as

T =
∑
i

MicviTi/cv, (41)

cv =
∑
i

Micvi (42)

After a radiation step, an energy deposition due to absorption-emission
physics must be redistributed to each material. For a mixed (bulk) specific
internal energy, we have the following relations:

en+1 − eh = cv
(
T n+1 − T h

)
= ∆e (43)

For each material in a cell, we use a mass fraction to redistribute the bulk
energy deposition as follows,

en+1
i = ehi + cvi

(
T n+1 − T h

)
, (44)
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5 Proposed Numerical Tests to be performed

To verify the correctness of implementation and validity of our radiation-
hydrodynamics algorithm, we plan to execute a series of numerical tests.
There are three regimes of interest in non-relativistic radiation-hydrodynamics
problems [26]:

• streaming limit λp
l
≥ 1.

• static diffusion limit. u
c
< λp

l
. Optically thick, “motionless” media

P = 1
3
E, F

cE
= O(λp

l
)

• dynamic diffusion limit, u
c
> λp

l
. Optically thick, moving medium,

P = 1
3
E, F

cE
= O(u

c
)

To test validity of our algorithm in these three regimes, we first follow a
recently proposed, series of 1D small scale problems [20] with increasing
complexities. The problems described in [20] are suitable to test algorithmic
behavior of the static diffusion limit. In addition to the proposed small scale
problems, we will use the Mach 45 radiative shock problem [17] and the dy-
namic diffusion test [13] for verification of the material-motion corrections
and dynamic diffusion terms. We plan to use cross-beam in vacuum [13] and
tophat problem [8] for testing streaming limit. Furthermore, when analytical
and/or benchmark solutions are not available, we will compare the solutions
obtained by the HOLO radiation and linearized TRT options within Sym-
phony. Since these two options share input, problem setup, and postprocess,
it is easier to eliminate inconsistency and enables a focus on the difference
in numerical implementations.
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Algorithm 3: Operator-split Lagrangian Radiation Hydrodynamics
in Symphony with linearized Sn Transport

Set initial condition I0, T0, E0,F0 ;
Set n = 0, tn = 0;
while tn < tfinal do

1. LAGRANGIAN HYDRO STEP;
Predictor Step ;
evaluate corner forces Fpcn from previous state ;
compute numerical fluxes dUdtn for each cell from Fpcn ;
evaluate time-step ∆tn;
move mesh to tn+1/2, using un, ∆tn/2, to get rn+1/2;
update solution to tn+1/2 ρn+1/2, un+1/2, En+1/2, using dUdtn ;
update Pn+1/2, Tn+1/2 from ρn+1/2, En+1/2;
Corrector Step ;
evaluate corner forces Fpcn+1/2 ;
evaluate fluxes dUdtn+1/2;
move mesh to tn+1; un+1/2, ∆tn+1, rn+1/2;
update solution ρn+1, uh, Eh from dUdtn+1/2;
update Ph, Th from Eh, ρn+1;
2. INTENSITY ADJUSTMENT DUE TO VOLUME
CHANGE;

using ρn, ρn+1 evaluate Ih;
3. RADIATION MOMENTUM DEPOSITION;
using Fn, Cn

F , evaluate un+1;
4. MATERIAL MOTION CORRECTION;
using un, un+1 evaluate Im;
4b. REMAP STEP;
5. RADIATION STEP;
compute In+1, Tn+1 from Im, Th
6. ENERGY DEPOSITION;
en+1 = eh + ∆tnρn+1cv(Tn+1 − Th);
update Pn+1, Tn+1 from En+1, ρn+1;
tn+1 = tn + ∆tn ;
Update solutions for next time-step;

end
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